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Hard and Soft-Core Equations of 
State for Simple Fluids 
VI. General Theory of Termination Temperatures, and a 
Validity Criterion for the Second Virial Coefficientt 

JOHN STEPHENSON 
Theoretical Physics Institute, University of Alberta, Edmonton. Alberta, Cenada T6G 2J 1 

(Receircd December 22, 1978) 

A general proof is given that the classical second virial coefficient satisfies the requirement for 
the non-existence of a termination point of any locus of c, extrerna. This validity criterion is 
applied to some proposed forms for the second virial coefficient. The order of the termination 
temperatures is verified for a fairly general intermolecular potential. In particular a proof is 
given that T,liesbetween T,and TA.Also thehard-corelimit oftheratio TD/TA(  -2)isexamined 
briefly. 

1 INTRODUCTION 

Once the intermolecular potential is known, it is straightforward to calculate 
the classical second virial coefficient and its temperature derivatives, and 
hence to extract numerical values for the six termination temperatures 
associated with the characteristic curves of a simple fluid. For the model 
systems and the Lennard-Jones rn, n potential, which have been analyzed in 
the two preceding papers IV and V,' we find that the termination tem- 
peratures occur in the order 

One would expect to be able to construct a proof of this sequence of in- 
equalities under fairly general conditions. Except for the inequality TF < TA, 
this sequence can be verified quite easily from the defining relations IV (12) 

t Research supported in part by the National Research Council of Canada, Grant No. 
A-6595. 
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52 1. STEPHENSON 

prooided the graph of the second virial coefficient has the usual shape, with 
B large and negative at low temperatures, and small and positive at high 
temperatures, with one zero at TB and one maximum at TA. 

The features that deserve detailed proof concern 

i) the general shape of the B versus Tgraph, 
ii) the finiteness of T’, 
iii) the inequality TF < TA. 

In  Section 4 we examine briefly the rather general occurrence of a limiting 
value of 2 for the ratio TD/TA in the hard-core limit, and obtain the asymptotic 
forms of TA, TD and TE for a generalized model based on the Lennard-Jones 
second virial coefficient. 

In IV we argued that it is impossible for a single locus of extrema of the 
constant volume specific heat C, to terminate on the temperature axis. at 
zero density. We showed that as a consequence the strict inequality 

2TB + T2B < 0 
must hold. We now verify in Section 5 when the second virial coefficient is 
obtained from the classical integral formulae, that the desired inequality (2) 
is satisfied at all temperatures for any “reasonable” intermolecular potential 
4. This inequality acts as a validity criterion for any temperature dependent 
expression representing a second virial coefficient, whether obtained from an 
approximate theory, or proposed for fitting experimental data. We will give 
some examples of its application. 

’ 

(2) 

2 SHAPE OF THE SECOND VlRlAL COEFFICIENT AND THE 
ORDER OF TERMINATION TEMPERATURES 

The classical formulae for the second virial coefficient are 

B = (b/a3) IOmd(r3) (1 - e-@‘“ )3 ( 3 4  

where +(r)  is the intermolecular potential, assumed to be spherically sym- 
metric.’ In (3), 

(4) 
2n b = - Lo3 
3 

is four times the volume of the L(Avogadro number) molecules in a mole, 
and Q is an effective molecular diameter chosen so the potential 4 has a 
minimum depth E at a radial distance c. 
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EQUATIONS OF STATE FOR FLUIDS V1 53 

It appears one should be able to verify the general temperature depen- 
dence of the second virial coefficient, at least when the intermolecular 
potential is spherically symmetric and not too singular or oscillatory. We 
shall need to calculate the first and second temperature derivatives of B, 
which are obtained by differentiating (3) under the integral sign. With the 
abbreviation 

we have from (3b) 
* = 4/kT ( 5 )  

(6a) 

(6b) 

B = (- b/u3) /omdrr3$re-r, 

TB = ( -b/u3) /omdrr3$r($ - l)e-*, 

r m  

Integration by parts, or differentiation under the integral sign in (3a), then 
yields 

TB = (- b/03) /0mdr3r2$e-', 

Iom 
(7a) 

T2B = ( -b /u3)  dr3r2(*2 - 2$)e-*. (7b) 
To ensure the existence of the thermodynamic limit and the convergence of 
the integrals in (3), we assume that Q, is large and positive at small radial 
distances, and small and negative at large radial distances, with 

4 = O(1/r3+'), 6 > 0 as r -, 0 or 03. (8) 
To simplify matters we further assume that 4 has one zero at a point c0, 
and one minimum at u. 

Inspection of (3b) shows that at very low temperatures the contribution 
to the integral from the exponential is important when C#J is negative, which 
is the case when r > c0.  If the temperature is suff?iciently low, only the 
contribution to the integral from the range r > u, where 4 is negative and 4' 
is positive, need be considered. Consequently B is large and negative at low 
temperatures. 

At the opposite extreme at very high temperatures, make a variable 
transformation of the form 

x = (7?3+6)-', (9) 
so that the effects of the attractive term in the argument of the exponent in 
(3b) can be neglected at sufficiently high temperatures, as in the Lennard- 
Jones case, with repulsive exponent n = 3 + 6. The repulsive small r portion 
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54 J .  STEPHENSON 

of the potential below uo, where 4 > 0 and 4' < 0, determines the asymp- 
totic behaviour. So B is positive at high temperatures, and has a tail of the 
form 

(10) B - r(i - 3/n)fT3'", 

up to a multiplicative constant. 
To see that B has just one maximum, where 8 vanishes, observe that the 

range of integration in (7a) can be divided into two parts at r = oo where 
JI vanishes. The positive and negative contributions to B are then separated, 
and by analyzing the behaviour of the exponential factor in these contri- 
butions as the temperature changes, one deduces that B has exactly one zero, 
at TA. From (7a) one observes that if the positive part of the potential is an 
infinite hard-wall barrier, then it does not contribute to the integral for 8, 
which then comes entirely from the negative portion of the potential. B is 
then positive at all temperatures, so in this hard-core case B is a monotonic 
increasing function of temperature, as it is for the Sutherland potential and 
for the square-well potential, approaching the value bui as T+  co. A proof 
that B has only one zero, without invoking extra conditions on the potential, 
has eluded us, although it seems one could try starting from (6c), using the 
information that JI' has just one zero. 

The existence of TE is established by first noting that at TD, B vanishes and 
T 8  < 0,sothedefiningexpression TB + T2BforTEisnegativeat TD,IV(l2f). 
Then at very high temperatures one uses the asymptotic form for B, derived 
above, to show that TB + T2B is positive. Consequently TE is finite. 

3 PROOF OF Tc < TF < T' 

TF is determined by the vanishing of B - TB + T2& so if we wish to prove 
that TF lies between Tc and TD, we note that at T, B - TB vanishes and E < 0, 
whereas at TO B = 0 and B - TB > 0. Consequently the defining expression 
for TF changes sign between Tc and TD, so T, < TF < TD. 

The difficulty is to prove that T, < TF < TA. First we observe again that 
at T, the defining expression B - TB + T2B is negative. Then at TA, 
vanishes, so from (7a) and (6b) 

Jomdrr2$e-* = 0. (11) 

Jomdrr3~te-* = Jomdrr'+~te-*. (12) 

and 
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EQUATIONS OF STATE FOR FLUIDS VI 55 

Now at TA, using (6a) for B and (7b) for T’B, we have with the help of (11) 
and then (1 2), 

Q 

B - T B  + T ~ B  = (-b/a3) J” dr(r3$’ + 3rz+z)e-*’, 

= ( -b/a3) J” drr2$(3$ + r$’)e-*. 

(13a)  

(13b) 

0 

Q 

0 

We now show that this expression is positive at TA, and hence verify that 
TF lies between T, and T A .  

As an aid to following the proof that the expressions in (13)  are positive, 
we have sketched the various factors in the integrand in Figure 1 for the case 
of the Lennard-Jones 6, 12 potential. We observe that, because of the 
asymptotic forms of $ and 4 in (8), the factor (3$ + r$’) is negative at small r,  
positive at large r, and moreover has just one zero in between. This last 
property follows since the combination f = r3$ has the same shape as $ 

FIGURE 1 Factors in the integrands used in proving T, < TA graphed versus the scaled 
radial distance r* = r/u. The potential is scaled so $(a) = - 1 .  The graphs are numbered as 
follows: 1, $; 2, r$’; 3,3$ + r$‘; 4, $(3$ + r@);  5, $(3$ + r$‘ + a). For purposes of illustration 
we have used the Lennard-Jones 6.12 potential at a temperature T* E k v c  = 1 so $ 3 $/kT = 
+*/T* and d * ( r * )  = +(r)/t; = ( r * - ”  - 2r*-*). 
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56 J. STEPHENSON 

and 4 as described above, so its derivativef' changes sign once, and (3$ + r$') 
= f ' / r 3 .  Further, this zero lies to the right of u. We can shift this zero towards 
oo by adding a positive constant a, which is to be chosen in such a way t,hat 
(3$ + r$' + a) is zero exactly at oo. The appropriate choice of a is obviously 
( -)ao $'(oo). Next we add zero to (13b) in the form of a times the LHS of (1 1) 
obtaining 

(- b/03)  Irndrr2$(3$. + r$' + a)e-*. 

The zeros of $ and (3$ + r$' + a) now coincide at go, so the product of 
these factors is always negative. Consequently the integral is negative, and 
we have shown that B - T$ + T 2 8  is positive at TA, QED. 

0 

4 THE RATlOT,/T, IN THE HARD-CORE LIMIT 

We remark briefly in this section on the rather general occurrence of a 
limiting value of 2 for the ratio TD/TA, and obtain the asymptotic forms of 
TA, 7'' and TE, as one approaches the hard-core limit. We consider the situ- 
ation in which the second virial coefficient admits an expansion in inverse 
fractional powers of temperature, of a form based on the Lennard-Jones 
model : 

B .., b'/TN - a'/TN+'-P + higher order negative terms, (14) 

where a' and b are positive constants depending on N. In the Lennard-Jones 
case we would have N = 3 /n  where n is the repulsive exponent, and p = m/n 
where m is the attractive exponent. More generally we shall assume that the 
hard-core limit is taken by letting N and p tend to zero, and that the asymp- 
totic values of the diverging termination temperatures TA, TO and TE are 
determined by only the first two terms in (14), which have opposite signs. 
From the defining expressions for TA , TD and TE : 

TA : B = 0, (154 
TD: B = 0, 

TE: A +  T B = O ,  

one immediately obtains from (14), as N and p tend to zero, 

TA - (a'lb') ( 1 / m  ( W  

TD - (a'/b')(2/N), ( 16b) 

TE - (a'lb') (1/N2). (164 
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EQUATIONS OF STATE FOR FLUIDS VI 57 

These forms are equivalent to the corresponding asymptotic expressions 
obtained for the M - N  model in IV with M = 1, except that (a'/&) may now 
depend on N. In the present more general situation, we now see that 

TDITA - 2, (17) 

(18) 

TE - (6'/a')TA2 (19)  

and 

T./TA - 1/N = n/3, 

independent of the ratio of coefficients (a'/W), whereas the relation 

involves the knowledge of this coefficient ratio. In the Lennard-Jones case 
the ratio (a'/&) tends to a constant involving only m in the hard-core limit. 

5 NON-EXISTENCE OF C y  LOCUS TERMINATION 
TEMPERATURE 

In order to verify the inequality (2) when the second virial coefficient is given 
by the classical formulae (3) for a general intermolecular potential 4, we 
substitute the expressions (7a) and (7b) for the required temperature deriva- 
tives of B. One immediately obtains 

2 T h  + T2B = ( -b/a3) dr3r2$'e-* < 0, QED. (20) jam 
As an example of the use of this result, we point out the danger of keeping 

just the first two terms of the series expansion form V (11) of the Lennard- 
Jones second virial coefficient as an approximate form for B:3  

B,, - b'/T"" ~ a'/T'+)l"-"h (21) 

M = 1 - (m - 3)/n, and N = 3/14 (22) 

( 2 3 )  

This two-term approximation is an M - N  model with 

so 

M + N = 1 - (m - 6)/n. 

When m = 6 the sum M + N = 1 for all values of n. Referring to IV (14g) 
we see that the seventh termination temperature TG of the undesired C, locus 
termination point now exists when m > 3, and coincides with the Boyle point 
TB when m = 6, for all values of n. The above danger does not exist in Section 
4, since N + 0 there. 
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58 J .  STEPHENSON 

As a second example of the utility of the validity criterion (2) we examine 
the second virial coefficient of argon, as obtained by Gosman, McCarty and 
Hust4. Their expression for B yields a temperature T, = 84.60 K where 
2B + TB vanishes, which is slightly above the triple point IT; = 83.80 K. By 
comparison the critical point is at 150.86 K. Thus, the fitted second virial 
coefficient expression becomes theoretically unsatisfactory just above the 
triple point, which is at the lower end of the temperature range employed by 
Gosman et al. 

CONCLUDING REMARKS 

The validity criterion (2) has been especially useful in constructing model 
expressions for the second virial coefficient in IV, and in checking the range 
of validity of various expressions used to fit experimental data. We have 
shown that the classical second virial coefficient satisfies the requirement (2) 
that no locus of C, extrema may terminate on the temperature axis at zero 
density. 

Our proof that the termination temperatures occur in the expected order 
(1) has depended on the graph of the second virial coefficient versus tem- 
perature having its usual shape, which can be verified for especially simple 
intermolecular potentials. The complication which arose in proving that 
T, < TF < TA was to be expected, since a similar difficulty occurred in 
proving the same inequality for the M-N model in IV. However, it is to be 
hoped that a simpler and more general proof can be found. 
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